首页> 外文OA文献 >Aeroelastic System Development Using Proper Orthogonal Decomposition and Volterra Theory
【2h】

Aeroelastic System Development Using Proper Orthogonal Decomposition and Volterra Theory

机译:基于正确正交分解和沃尔泰拉理论的气弹系统开发

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This research combines Volterra theory and proper orthogonal decomposition (POD) into a hybrid methodology for reduced-order modeling of aeroelastic systems. The out-come of the method is a set of linear ordinary differential equations (ODEs) describing the modal amplitudes associated with both the structural modes and the POD basis functions for the uid. For this research, the structural modes are sine waves of varying frequency, and the Volterra-POD approach is applied to the fluid dynamics equations. The structural modes are treated as forcing terms which are impulsed as part of the uid model realization. Using this approach, structural and uid operators are coupled into a single aeroelastic operator. This coupling converts a free boundary uid problem into an initial value problem, while preserving the parameter (or parameters) of interest for sensitivity analysis. The approach is applied to an elastic panel in supersonic cross ow. The hybrid Volterra-POD approach provides a low-order uid model in state-space form. The linear uid model is tightly coupled with a nonlinear panel model using an implicit integration scheme. The resulting aeroelastic model provides correct limit-cycle oscillation prediction over a wide range of panel dynamic pressure values. Time integration of the reduced-order aeroelastic model is four orders of magnitude faster than the high-order solution procedure developed for this research using traditional uid and structural solvers.
机译:这项研究将Volterra理论和适当的正交分解(POD)相结合,成为一种用于空气弹性系统降阶建模的混合方法。该方法的结果是一组线性常微分方程(ODE),它们描述了与uid的结构模式和POD基函数相关的模式振幅。对于本研究,结构模式是频率变化的正弦波,并且将Volterra-POD方法应用于流体动力学方程。结构模式被视为强迫项,这些强迫项作为uid模型实现的一部分而受到推动。使用这种方法,将结构和uid操作符耦合到单个气动弹性操作符中。这种耦合将自由边界uid问题转换为初始值问题,同时保留了敏感分析所需的一个或多个参数。该方法适用于超音速流动的弹性面板。 Volterra-POD混合方法提供了状态空间形式的低阶uid模型。使用隐式积分方案,线性uid模型与非线性面板模型紧密耦合。所得的气动弹性模型可在各种面板动压值范围内提供正确的极限循环振荡预测。降阶空气弹性模型的时间积分比使用传统的uid和结构求解器为此研究开发的高阶求解程序快四个数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号